Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0

نویسنده

  • Alexandra SHLAPENTOKH
چکیده

— Let K be a one-variable function field over a field of constants of characteristic 0. Let R be a holomorphy subring of K, not equal to K. We prove the following undecidability results for R: if K is recursive, then Hilbert’s Tenth Problem is undecidable in R. In general, there exist x1, . . . , xn ∈ R such that there is no algorithm to tell whether a polynomial equation with coefficients in Q(x1, . . . , xn) has solutions in R. Résumé. — Soit K un corps de fonctions d’une variable sur un corps de caractéristique nulle. Soit R un anneau d’holomorphie de K, distinct de K. Si K est récursif, nous démontrons que le dixième problème de Hilbert sur R est indécidable. En général, il existe x1, . . . , xn dans R tels qu’il n’y ait pas d’algorithme décidant si une équation polynomiale à coefficients dans Q(x1, . . . , xn) a une solution dans R.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic 0 Laurent Moret-bailly and Alexandra Shlapentokh

Let K be a one-variable function field over a field of constants of characteristic 0. Let R be a holomorphy subring of K, not equal to K. We prove the following undecidability results for R: If K is recursive, then Hilbert’s Tenth Problem is undecidable in R. In general, there exist x1, . . . , xn ∈ R such that there is no algorithm to tell whether a polynomial equation with coefficients in Q(x...

متن کامل

Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic

Let K be a one-variable function field over a field of constants of characteristic 0. Let R be a holomorphy subring of K, not equal to K. We prove the following undecidability results for R: If K is recursive, then Hilbert’s Tenth Problem is undecidable in R. In general, there exist x1, . . . , xn ∈ R such that there is no algorithm to tell whether a polynomial equation with coefficients in Q(x...

متن کامل

On Existential Definitions of C.e. Subsets of Rings of Functions of Characteristic 0

We extend results of Denef, Zahidi, Demeyer and the second author to show the following. (1) Rational integers have a single-fold Diophantine definition over the ring of integral functions of any function field of characteristic 0. (2) Every c.e. set of integers has a finite-fold Diophantine definition over the ring of integral functions of any function field of characteristic 0. (3) All c.e. s...

متن کامل

Diophantine undecidability of function fields of characteristic greater than 2, finitely generated over fields algebraic over a finite field

Let F be a function field of characteristic p > 2, finitely generated over a field C algebraic over a finite field Cp and such that it has an extension of degree p. Then Hilbert’s Tenth Problem is not decidable over F .

متن کامل

The Real Holomorphy Ring and Sums of Powers in Rational and Elliptic Function Fields over The Field of Real Numbers

This thesis is devoted to a study of real holomorphy rings in R(x) and elliptic function fields R(x)( √ f(x)), f is a monic polynomial of degree 3 with no multiple roots in C over R and sums of powers in R(x). The objects of study are real valuation rings, real holomorphy rings and real places in the rational function fields R(x) and then investigate their extension to elliptic function fields ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009